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SUMMARY 

An investigation of the s t a t i c  f lo t a t ion  charac te r i s t ics  of the 
present Apollo configuration was conducted using one-fifth geometrically 
scaled models of the command module and i t s  pressure vessel. 
su l t ing  data were expanded graphically and analyt ical ly  t o  arr ive a t  the 
f l o t a t i o n  characterist ics.  Results from t h i s  study show tha t  the pres- 
en t ly  considered Apollo concept w i l l  have desirable s t a t i c  f lo t a t ion  
character is t ics  with proper location of the center of gravity. 

The re- 

INTRODUCTION 

Because of the poss ib i l i ty  of a water landing a f t e r  reentry of an 
Apollo Command Module, it i s  necessary t o  be able t o  predict  the f lo ta -  
t i o n  character is t ics  of the module; lack of such an investigation i n  
the Mercury program caused some problems late i n  the  design stage. De- 
s ign  of a spacecraft must be such as  t o  allow the hatch t o  be above water 
a t  a l l  s table  angles of hee l  ( l i s t  angles). Previous investigations a t  
the Manned Spacecraft Center on post-landing hydrostatic f lo t a t ion  chara- 
c t e r i s t i c s  of an e a r l i e r  Apollo module concept have been conducted, but 
since then the Apollo configuration has changed considerably. The work 
described herein deals  with the present concept. 

The objectives of t h i s  study were t o  obtain and evaluate the s t a t i c  
f lo t a t ion  character is t ics  of the current Apollo command module configura- 
t i o n  f o r  any predicted spacecraft center of gravity (cog.) location. 
Flotat ion character is t ics  a re  defined as  the s table  a t t i t ude  or a t t i tudes  
at ta inable  a t  post-landing conditions f o r  any cog. location and the re- 
sul t ing waterline locations. 

DESCRIPTION OF APPARATUS 

Two f iberglass  models w e r e  used t o  obtain the basic data required 

The 
for the f lo t a t ion  character is t ics .  
scaled model of the external Apollo command module configuration. 
second was a one-fifth scale model of the pressure vessel  exterior. 
scale dimensions of each configuration are  presented i n  figures 1 and 2,  
respectively. The necessity of using two models was due to  the consid- 
e ra t ion  t h a t  the exter ior  Apollo she l l  a t  touchdown w i l l  not be water- 
t ight .  This means tha t  the buoyancy ef fec t  w i l l  be due t o  the shape of 
the  pressure vessel  plus the buoyancy of the submerged outside structure 
and a l l  submerged equipmnt, tanks, e t  cetera, t ha t  w i l l  occupy the space 

One w a s  a one-fifth geometrically 

Ful l  
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between the two structures.  

Each model was encircled by a s t e e l  r ing contained i n  a v e r t i c a l  
plane through the ax is  of symmetry. 
in te rva ls  t o  allow attachment of an external  weight a t  any desired 
location,, 
are  shown i n  figures 3 and 4. 

The rings had holes a t  prescribed 

The model-ring combinations with external ly  attached weights 

A t  present it i s  e s t i m t e d  t h a t  the  weight of the  ac tua l  command 
module will be between 8,500 and 9,500 pounds a t  touchdown. 
weights a t  which each model was f loated were i n  t h i s  range, 
analysis the weight scale  f a c t o r  i s  the cube of the model scale, 
fore ,  i n  the case of the one-fifth m o d e l  scale ,  t he  weight scale fac tor  

i s  r23” 
adjusted t o  sea water conditions by dividing each tes t  setup weight by 
the  specif ic  gravity of sea water (1.026). Hence, the required scaled 
weights w e r e  from 66 t o  74 pounds, Both models were designed t o  weigh 
less than the required tes t  wej-ghts, thus allowing the addition of 
ex te rna l  weights t o  bring the  models up t o  the  desired simulated weight. 

The simulated 
I n  any model 

There- 

Since the tests were run i n  f resh  water, a l l  model weights w e r e  

PROCEDURE 

Before s t a r t i ng  the tes ts  the weight and cog. location f o r  each model- 
r ing  were obtained, The external  weight was attached t o  the ring; then 
the model was placed i n  a tank of water and allowed t o  a t t a i n  a s tab le  
a t t i tude .  
times so  tha t  the buoyancy force on the weight had t o  be taken i n t o  
consideration,, 
which was submerged was neglected since it was less than 0.5 percent of 
the  model displacement, 
was then attached t o  the next prescribed hole i n  the  ring. This forced 
the model t o  take a new angle of hee l  a t  the same weight, 
the  c.g, of the  simulated spacecraft  had been moved. Data w e r e  obtained 
through 180 degrees of hee l  f o r  each model. For each posit ion the loca- 
t i o n  of the suspeded weight a-nd the points of in te rsec t ion  of the water- 
li.ne on the ring were recorded, 
weights of 8,500, 9,000, and 9,500 pounds. 
the model cog. location, and the point of attachment of the external  
weight a t  each a t t i t ude  w e r e  located on ful l -scale  drawings of the  models 
and rings. 
waterline,  an ana ly t ica l  summation of moments and of forces revealed the 
l i ne  of act ion of the  buoyancy force o p t h e  model. 2ecause tine system 
was s tab le ,  t h i s  buoyancy force l i n e  of act ion acted through the composite 
c.g0 of the complete system. 
these drawings,) 

During each test  the external  weight was submerged a t  a l l  

The buoyancy e f f ec t  of t h a t  portion of the s teel  r ing 

After the required data were recorded, the weight 

Thus, i n  e f f ec t ,  

This procedure w a s  followed for simulated 
The posit ion of the waterline,  

Since a l l  weight force vectors acted perpendicular t o  the 

(Figure 5 i s  a representation of one of 
Therefore, with the  actual  spacecraft  c.g, located a t  
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any point on the l i ne  of action, the spacecraft would a t t a i n  the angle 
of hee l  of tha t  par t icular  a t t i tude.  

RESULTS AND DISCUSSION 

From the drawings, the location of the intersect ion of the buoyancy 
force l i ne  of action with the spacecraft geometric centerline was deter- 
mined f o r  each attained angle of heel. 
With t h i s  information a p lo t  was made of the angle of hee l  between 0 and 
180 degrees versus the recorded intersect ion points (or s ta t ions)  f o r  
each model and t e s t  displacement. The r e su l t s  a re  shown i n  figures 6 
through 8. 

This i s  point A on figure 5. 

Graphs (figures 9 through 14) were made with the ordinates repre- 
senting the stations on the centerline of the spacecraft ( X c ) ,  and the 

buoyancy force l ines  of act ion a t  5 degree and 10 degree intervals  were 
drawn from each corresponding intersect ion of the centerline a s  obtained 
from the previous curves. 
from the spacecraft centerline. Thus, i n  e f f ec t ,  the drawings a re  half 
sections of the pressure vessel  and external configuration with the 
correct buoyancy l ines  of act ion drawn i n  a t  prescribed angles for t h e  
three d i f fe ren t  weights. 

The abscissas represent perpendicular distances 

A spacecraft c.g. can be placed a t  any location on these drawings. 
With ary Cage located, the righting o r  upsetting lever arm can be meas- 
ured; t h i s  arm would be the perpendicular distance from the c.g. t o  t h e  
desired buoyancy force l i ne  of action. 
t i ng  moment a t  any angle, the perpendicular distance i s  multiplied by the 
spacecraft weight. 
r igkting moment versus angle of heel can be drawn by obtaining the data 
as  i l l u s t r a t ed  above. 
The c.g. location used i n  these examples i s  i n  the v ic in i ty  currently 
being considered f o r  the ac tua l  Apollo command module. When making the 
p lo t ,  clockwise moments were assumed negative. Also, assuming tha t  the 
Apollo c.g. w i l l  always seek the  lowest plane at ta inable  with reference 
t o  the  water surface, the angle of heel  was plotted t o  only 180 degrees 
because any angle of hee l  greater than 180 degrees w i l l  cause the space- 
c r a f t  t o  tu rn  on i t s  axis of symmetry a d  thus duplicate f lo ta t ion  chara- 
c t e r i s t i c s .  
f u l l  s ize  reproductions of f igures  9 through li: are  available upon request 
from Systems Evaluation and Development Division of the Mannzd Spacecraft 
Center, 

~ From t h e  righting moment versus angle of heel curves, the stable 

To obtain the righting or upset- 

By placing the c.g. a t  a desired location, a plot  of 

Examples f o r  such a plot  a re  f igures  15 through 1’7. 

I f  an evaluation of a specific C a g e  location i s  desired, 

a t t i t udes  of the f loa t ing  module can be found. A n y  s table  position 
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e x i s t s  where the force of gravity i s  i n  d i r ec t  l i ne  with the force of 
buoyancy. The s tab le  a t t i t udes  e x i s t  on the curves where the righting 
moment curve crosses the zero moment l ine  with a posit ive slope. The 
module i s  theoret ical ly  s table  where the curve crosses the zero moment 
l ine  with a negative slope, but any minute change i n  a t t i t ude  would 
cause the spacecraft t o  seek one of the t rue s table  positions. 
r ighting moments w i l l  decrease the angle of heel, and negative righting 
moments w i l l  increase the angle of heel. 
curve and the pressure vessel  curve superimposed on the same graph, it 
can be seen that the ac tua l  r ight ing moment curve would l i e  somewhere 
between the two. 

Positive 

With the outside configuration 

When analyzing s ignif icant  c.g. location regions, reference should 
be made t o  figures 9 through 14. 
buoyancy force l ines  of action, cog. boundary extremes are  obtained fo r  
estimating the number of s table  att i tudes.  
three regions of c.g. location which resu l t  i n  s ignif icant ly  different  
f l o t a t ion  a t t i tudes  and a region of indeterminable a t t i t ude  o r  a t t i tudes.  
The regions shown i n  f igures  18 through 20 are  the three determinable 
regions (1 through 3) of the outside configuration compared with those of 
the pressure vessel. Figure 2 1  through 23 show the outside configuration 
and pressure vessel  regions superimposed, and thus i l l u s t r a t e  the exis t -  
ence of a non-determimte region 4. 
undefined buoyancy e f f ec t s  of a l l  equipment, tanks, e t  cetera,  around 
the outside of the pressure vessel, the f loat ing a t t i tudes  of a c.g. 
location i n  region 4 cannot be f u l l y  defined. With the cog. located 
anywhere i n  region 4,  the spacecraft w i l l  have e i t h e r  one or two s table  
a t t i tudes  and an angle of hee l  which cannot be estimated and can be any- 
where between 0 and 180 degrees. With the c.g. located a t  any point i n  
region 1, the module w i l l  have one s table  a t t i t ude  with a predictable 
angle of heel  somewhere between 0 and 90 degrees. With the ceg. located 
anywhere i n  region 2, there  w i l l  be only one s table  a t t i t ude  with the 
angle of heel  between 90 and 180 degrees. The pressure vessel curve of 
f igure 17 i s  an example of the righting moment curve f o r  a c.g. located 
i n  region 2 (angle of hee l  i s  144-O). 
i n  region 3, the spacecraft w i l l  have two s table  a t t i tudes ;  one a t t i t ude  
w i l l  have an angle of heel  between 0 and 90 degrees, and the second w i l l  
be between 90 and 180 degrees. 
r ight ing moment curves f o r  a cog. location i n  region 3. 

By fa i r ing  the intersect ions of the 

This shows tha t  there  a re  

A s  stated previously, with the 

If the cog. i s  located a t  any point 

Figures 15 and 16 are  examples of the 

With the information given i n  f igures  24 through 26, one can picto- 
r i l l y  determine what portion of the spacecraft i s  below the surface of the 
water for each weight a t  d i f fe ren t  angles of heel. 
model centerline and the waterline were i n  planes almost pa ra l l e l  t o  each 
other the centerline-waterline intersect ion was not obtainable (heel angles 
of 80@ through 110O). Figures 27 and 28 show the typ ica l  f l o t a t ion  a t t i -  
tudes for the Apollo with the  cog. located i n  region 3 a t  Xc -: 45 offset  

A t  angles where the 
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7.5 inches and a t  Xc = 42 of fse t  10 inches, respectively, 

CONCLIlDING RFMARKS 

From the study, it can be s ta ted tha t  there  a re  three s ignif icant  
regions which give d i f fe ren t  f l o t a t i o n  a t t i t udes  and one non-determinate 
region. With the  presently considered Apollo command module cog. loca- 
t i o n  and weight, there  are  two s table  a t t i tudes.  
study show t ha t  t he  presently considered Apollo concept w i l l  have des i r -  
able s t a t i c  f l o t a t i o n  charac te r i s t ics  with proper cog. location. Once a 
weight and cog. location a re  established, the waterline and angle of hee l  
can be closely predicted with the information from t h i s  study. 

Results from t h i s  
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FIG. 2 DETALLS OF PRESSURE VESSEL 
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FIG. 3 APQLLO EXTERNAL CONFIGURATION 
MODEL TEST SET-UP 



FIG. 4 APOLLO PRESSURE VESSEL 
MODEL TEST SET-UP 
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Xe=lOC 1 

FIG. 5 TYPICAL FORCE DIAGRAM ON 
PRESSURE VESSEL MODEL DRAWING 
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